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ABSTRACT

Materials discovery is crucial for making scientific advances in
many domains. Collections of data from experiments and first-
principle computations have spurred interest in applying machine
learning methods to create predictive models capable of mapping
from composition and crystal structures to materials properties.
Generally, these are regression problems with the input being a 1D
vector composed of numerical attributes representing the material
composition and/or crystal structure. While neural networks con-
sisting of fully connected layers have been applied to such problems,
their performance often suffers from the vanishing gradient prob-
lem when network depth is increased. Hence, predictive modeling
for such tasks has been mainly limited to traditional machine learn-
ing techniques such as Random Forest. In this paper, we study and
propose design principles for building deep regression networks
composed of fully connected layers with numerical vectors as input.
We introduce a novel deep regression network with individual resid-
ual learning, IRNet, that places shortcut connections after each layer
so that each layer learns the residual mapping between its output
and input. We use the problem of learning properties of inorganic
materials from numerical attributes derived from material com-
position and/or crystal structure to compare IRNet’s performance
against that of other machine learning techniques. Using multi-
ple datasets from the Open Quantum Materials Database (OQMD)
and Materials Project for training and evaluation, we show that
IRNet provides significantly better prediction performance than
the state-of-the-art machine learning approaches currently used
by domain scientists. We also show that IRNet’s use of individual
residual learning leads to better convergence during the training
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phase than when shortcut connections are between multi-layer
stacks while maintaining the same number of parameters.
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1 INTRODUCTION

Materials discovery plays an important role in many domains of
science and engineering [32, 37]. The slow pace of development
and deployment of new/improved materials is a major bottleneck
in the innovation cycles of emerging technologies [25]. Collection
of large scale datasets through experiments and first-principle com-
putations such as high throughput density functional theory (DFT)
calculations [10, 22, 27] and the emergence of integrated data col-
lections and registries [6, 11] have spurred the interest of materials
scientists in applying machine learning (ML) models to understand
materials and predict their properties [8, 13, 28, 30, 36, 39, 42, 47, 51],
leading to the novel paradigm of materials informatics [3, 38, 39, 49].
Such interests have been supported by government initiatives such
as the Materials Genome Initiative (MGI) [1].

Predictive modeling tasks in materials science are generally re-
gression problems where we need to predict materials properties
from an input vector composed of numerical features derived from


https://doi.org/10.1145/3292500.3330703
https://doi.org/10.1145/3292500.3330703

their composition and/or crystal structures by incorporating do-
main knowledge [8, 13, 24, 39, 42, 47, 51]. Since the model input
contains vector of independent features, the neural network mod-
els used for such tasks are composed of fully connected layers.
Vanishing gradient and performance degradation issues that arise
when using deeper architectures have caused the neural network
architectures used for such prediction modeling to be limited in
their depth [24, 30, 34, 36, 52]. For instance, Montavon et al. [30]
trained a four-layer network on a database of around 7000 organic
compounds to predict multiple electronic ground-state and excited-
state properties. In the Harvard Energy Clean Project, Pyzer-Knapp
et al. [36] used a three-layer network for predicting power conver-
sion efficiency of organic photo-voltaic materials. Zhou et al. [52]
used a fully connected network with single hidden layer to predict
formation energy from high-dimensional vectors learned using
Atom2Vec. ElemNet [24] used a 17-layered architecture to learn
formation energy from elemental composition, but experienced per-
formance degradation beyond that depth. Hence, domain scientists
have mainly used traditional ML techniques such as Random Forest,
Kernel Ridge Regression, Lasso, and Support Vector Machines for
materials prediction tasks [12, 14, 29, 47].

Recently, several projects have used domain knowledge-based
model engineering within a deep learning context for predictive
modeling in materials science [16, 23, 41]. Deep learning was used
for directly predicting the crystal orientations of polycrystalline
materials from their electron back-scatter diffraction patterns [23].
SchNet [41] used continuous filter convolutional layers to model
quantum interactions in molecules for the total energy and inter-
atomic forces that follows fundamental quantum chemical princi-
ples. Boomsma and Frellsen [7] introduced the idea of spherical
convolution in the context of molecular modelling, by consider-
ing structural environments within proteins. Smiles2Vec [16] and
CheMixNet [34] have applied deep learning methods to learn molec-
ular properties from the molecular structures of organic materials.

Our goal here is to design a general purpose deep regression
network for predicting the properties of inorganic materials from
their compositions and/or crystal structures, without using any
domain knowledge-based model engineering. We introduce the
idea of residual learning to deep regression networks composed of
fully connected layers. In a fully connected network, the number
of parameters is directly proportional to the product of the number
of inputs and the number of output units. Several works have dealt
with the performance degradation issue due to vanishing or explod-
ing gradients for other types of data mining problems [18, 19, 43].
Srivastava et al. [43] introduced an LSTM-inspired adaptive gating
mechanism that allowed information to flow across layers without
attenuation; the gating mechanism required more model param-
eters. They designed highway networks composed of up to 100
layers that could be optimized. A highway network [43] uses gated
connections, which double the number of parameters in a fully
connected network. In a DenseNet [19], all previous inputs are
combined before being fed into the current layer. For a fully con-
nected network, this approach results in a tremendous increase in
the number of model parameters, a particular problem when work-
ing with limited GPU memory. He et al. [18] introduced the idea
of residual learning, in which a stack of layers learns the residual

mapping between the output and input; they built deep CNN mod-
els composed of 152 layers for image classification problem. Since
the input is added to the residual output, the number of required
parameters for residual learning was lower than that in Srivastava
et al. [43]. This technique has been used in several CNN and LSTM
architectures, with shortcut connections being placed after a stack
of multiple CNN or LSTM layers to build deeper networks for bet-
ter performance [20, 44, 46]. For a fully connected network, an
elegant approach is to use the residual mapping approach used in
ResNet [18]. However, although residual learning has been widely
used in classification networks, no previous work leverages residual
learning for building deep regression networks composed of fully
connected layers for numerical vector inputs.

In this paper, we study and propose design principles for build-
ing deep residual regression networks composed of fully connected
layers for data mining problems with numerical vectors as inputs.
We introduce a novel deep regression network architecture with
individual residual learning (IRNet), in which shortcut connections
are placed after each layer such that each layer learns only the
residual mapping between its output and input vectors. We com-
pare IRNet against two baseline deep regression networks: and a
stacked residual network (SRNet) with shortcut connections after
stack of multiple layers. We focus on the design problem of learn-
ing the formation enthalpy of inorganic materials from an input
vector composed of 126 features representing their crystal struc-
ture, and another 145 composition-based physical attributes from
the OQMD-SC dataset. OQMD-SC contains 435 582 materials with
their composition and crystal structure from the Open Quantum
Materials Database (OQMD) [27].

Our proposed 48-layered IRNet achieves significantly better per-
formance than does the best state-of-the-art ML approach, Random
Forest: a mean absolute error (MAE) of 0.038 eV/atom compared
to 0.072 eV/atom on the OQMD-SC dataset. IRNet also performed
significantly better than both the plain network and SRNet. The
use of individual residual learning (IRNet) led to faster convergence
compared to the existing approach of residual learning in SRNet,
while maintaining the same number of parameters. We also evalu-
ated IRNet performance for learning materials properties with 145
composition-based physical attributes in two other datasets: OQMD-
C (341 443 data points) and MP-C (83 989) [22]. IRNet significantly
outperformed the plain network and the traditional ML approach
on the new prediction tasks; the deeper models performing better
in case of larger dataset (OQMD-C). We performed a combinato-
rial search for materials discovery using the proposed models. The
models were trained on 32 111 entries in OQMD-SC-ICSD dataset.
The evaluation was performed by searching for stable materials
with specific crystal structures. The proposed model provided sig-
nificantly more accurate predictions compared to the traditional
ML approach (Random Forest).

2 BACKGROUND
2.1 Property Prediction

The prediction of chemical properties from material crystal struc-
ture and composition is strongly related to the discovery of new
materials. One important material property is formation enthalpy:



the change in energy when one mole of a substance in the stan-
dard state (1 atm of pressure and 298.15 K) is formed from its pure
elements under the same conditions [33]. In other words, it is the en-
ergy released when forming a material (chemical compound) from
the constituent elements. By knowing the formation enthalpy, one
can know whether the material is stable and thus feasible to experi-
mentally synthesize in laboratory. The more negative the formation
enthalpy, the more stable the compound. Materials properties also
contain various other properties [22, 27].

2.2 Materials Representation

Most ML approaches require manual feature engineering and a
representation that incorporates domain knowledge into model in-
puts. They thus take composition-based physical attributes and/or
crystal structure as the input. Recently, Ward et al. [47] presented a
ML framework for formation energy prediction that used an input
vector with 145 features computed from composition; stoichiomet-
ric attributes, elemental property statistics, electronic structure at-
tributes, and ionic compound attributes. We leverage this approach
to compute the 145 physical attributes used in our datasets.

The crystal structure of a material is defined by the shape of the
unit cell and associated atom positions, which together define the
repeat pattern of the atomic structures that form the material. It
is possible to represent the unit cell shape and atom positions as
a vector of 3 + 3N features (where N is the number of atoms), but
this representation is not suitable for ML. The atomic coordinates
are not unique—rotating or translating the coordinate system does
not change the material—and they do not readily reflect important
features of the material (e.g., bond lengths). Many crystal structure
representations, such as “bag of bonds” [17] and histograms of bond
distances [40], have been developed to address this problem. We
use the representation developed by Ward et al. [48], which uses
126 features derived from the Voronoi tessellation of a material.
The Voronoi tessellation of a crystal structure provides a clear
description of the local environment of each atom, which is used
to compute features such as the difference in elemental properties
(e.g., molar mass) between an atom and its neighbor [48].

3 DESIGN

We next describe how we build deep residual regression models,
composed of multiple fully connected layers, for data mining prob-
lems with numerical vectors as inputs. We first introduce a plain
network without any residual learning. Next, we build a stacked
residual network by introducing shortcut connections for residual
learning after each of a number of stacks, each composed of one or
more layers with the same configuration. Finally, we introduce our
novel individual residual learning approach, in which shortcut con-
nections are used after every layer. We use the plain network and
stacked networks later as baseline models for comparison against
the individual residual network.

3.1 Plain Network

The model architecture is formed by putting together a series of
stacks, each composed of one or more sequences of three basic
components with the same configuration. Since the input is a nu-
merical vector, the model uses a fully connected layer as the initial
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Figure 1: Three types of 17-layer networks. Each “layer” is a
fully connected neural network layer with size as described
in Table 1; all but the last are followed by batch normaliza-
tion and ReLU. A plain network simply connects the output
of each layer to the input of the next. A stacked residual net-
work (SRNet) places a shortcut connection after groups of
layers called stacks. An individual residual network (IRNet)
places a shortcut connection after every layer.



Table 1: Detailed configurations for different depths of network architecture. The notation [...] represents a stack of model
components, comprising a single (FC: fully connected layer, BN: batch normalization, Re: ReLU activation function) sequence
in the case of IRNet and multiple such sequences in the case of SRNet. Each such stack is followed by a shortcut connection.

24-layer IRNet

48-layer SRNet

48-layer IRNet

[FC1024-BN-Re] x 4

[FC1024-BN-Re x 4] x 2

[FC1024-BN-Re] x 8

[FC512-BN-Re] x 4

[FC512-BN-Re x 4] x 2

[FC512-BN-Re] x 8

[FC256-BN-Re] x 4

[FC256-BN-Re x 4] x 2

[FC1024-BN-Re] x 8

[FC128-BN-Re] x 4

[FC128-BN-Re x 4] x 2

[FC128-BN-Re] x 8

[FC64-BN-Re] x 3

[FC64-BN-Re x 4] x 2

[FC64-BN-Re] x 8

[FC32-BN-Re] x 2

[FC32-BN-Re x 4]

[FC32-BN-Re] x 4

[FC16-BN-Re] x 2

[FC16-BN-Re x 3]

[FC16-BN-Re] x 3

Output| 17-layer SRNet 17-layer IRNet 24-layer SRNet

1024 |[FC1024-BN-Re x 4] | [FC1024-BN-Re] x 4| [FC1024-BN-Re x 4]
512 | [FC512-BN-Re x 3] | [FC512-BN-Re] x 3 | [FC512-BN-Re x 4]
256 | [FC256-BN-Re x 3] | [FC256-BN-Re] x 3 | [FC256-BN-Re x 4]
128 | [FC128-BN-Re x 3] | [FC128-BN-Re] x 3 | [FC128-BN-Re x 4]
64 | [FC64-BN-Re x 2] | [FC64-BN-Re] x 2 | [FC64-BN-Re x 3]
32 [FC32-BN-Re] [FC32-BN-Re] | [FC32-BN-Re x 2]
16 [FC16-BN-Re x 2]
1

FC1

layer in each sequence. Next, to reduce the internal covariance
drift for proper gradient flow during back propagation for faster
convergence, a batch normalization layer is placed after the fully
connected layer [21]. Finally, ReLU [31] is used as the activation
function after the batch normalization.

The simplest instantiation of this architecture adds no shortcut
connections and thus learns simply the approximate mapping from
input to output. We refer to this network as a plain network.

3.2 Stacked Residual Learning

Deep neural networks suffer from the vanishing or exploding gra-
dient problem [4, 15], which hampers convergence, and also from
the degradation problem: as network depth increases, accuracy
becomes saturated and then degrades rapidly. One approach to
dealing with these issues is to use shortcut connections for residual
learning [18, 19, 43].

Here, we introduce the idea of residual learning to deep regres-
sion networks composed of fully connected layers. In a fully con-
nected network the number of parameters is directly proportional
to the product of the number of inputs and the number of output
units. The gated connection approach from the highway network
and the use of all previous inputs from DenseNet [19] would result
in a huge increase in model parameters that would not fit in GPU
memory. Hence, for a fully connected deep neural network, the
residual learning from He et al. [18] is the most elegant approach.

We use stacks of consecutive layers with the same configuration,
with the first stack composed of four sequence of layers and the final
stack of two sequences. Instead of directly fitting the underlying
mapping, the stacked layers explicitly learn the residual mapping.
If the underlying mapping is denoted by H(x), the stacked layers
fit the residual mapping of F(x) = H(x) — x. If the input and output
of a stack have the same dimensions, they can be added by using a
shortcut connection for residual learning. If the output of a layer,
F(x), has a different dimension than the input x, we perform a linear
projection Ws to match the dimensions before adding:

y = F(x) + Wsx, (1)

where x and F(x) are the input and output to the stack of layers,
respectively. Wy acts as a dimension reduction agent. We refer to
such a network with shortcut connections across each stack as a
stacked residual network (SRNet).

3.3 Individual Residual Learning

He et al. [18] introduced the idea of using shortcut connections
after a stack composed of multiple convolutional layers. The latest
Inception-ResNet [44] architecture for image classification follows
a similar approach, with shortcut connections used between stack
of Inception-ResNet blocks, where each block is composed of mul-
tiple convolutional layers followed by 1 X 1 convolutional filters for
dimension matching. In our case, the stacks are composed of up to
four sequences, with each sequence containing a fully connected
layer, a batch normalization, and ReLU. Our stacks are compara-
bly more complex and highly non linear when compared to those
used in CNN models for image classification. Also, learning the
residual regression mapping from input to output vector is compar-
atively harder than the residual learning for classification task; the
activations and gradients can vanish within the stacks.

To solve this issue, we introduce a novel technique of individual
residual learning for sequences containing a fully connected layer
with batch normalization and non linear activation. We place a
shortcut connection after every sequence, so that each sequence
needs only to learn the residual mapping between its input and
output. This innovation has the effect of making the regression
learning task easy. As each “stack” now comprises a single sequence,
shortcut connections across each sequence provide a smooth flow
of gradients between layers. We refer to such a deep regression
network with individual residual learning capability as an individual
residual network (IRNet).

The detailed architectures for networks with different depths are
illustrated in Figure 1 and Table 1. There are several deep network
design techniques based on advanced branching techniques such as
Inception [44, 45] and ResNext [50], but here our goal is to design
a general purpose deep regression network framework rather than
optimizing for a specific prediction task. We will explore branching
techniques in future work.

4 EMPIRICAL EVALUATION

We now present a detailed analysis of the design and evaluation of
our deep regression networks with residual learning. We proceed in
three stages. First, we present our evaluation of the proposed deep
regression model (IRNet) for the design problem and compare its
performance with the plain network, SRNet, and traditional ML ap-
proaches when applied to the OQMD-SC dataset. Next, we evaluate




the proposed model architecture by learning materials properties
from physical attributes for compounds in the OQMD-C and MP-C
datasets. Finally, we perform a combinatorial search for materials
discovery by training on the OQMD-SC-ICSD dataset. Before pre-
senting our evaluation, we discuss the experimental settings and
datasets that we use in this work.

Experimental Settings. We implement the deep learning models with
Python and TensorFlow [2]. We performed extensive architecture
search and hyperparameter tuning for all deep learning and other
ML models used in this study. For deep learning models, we ex-
perimented with different activation functions: sigmoid, tanh, and
ReLU, both for the intermediate layers and for the final regression
layer. We explored learning rates in [le-1, le-2, le-3, le-4, le-5, le-
6]; StochasticGradientDescent, MomentumOptimizer, Adam, and
RMSProp optimizers; and mini-batch sizes in [32, 64, 128]. Since we
are dealing with regression output, we experimented with mean
squared error and mean absolute error as the loss functions. We
found the best hyperparameters to be are Adam [26] as the opti-
mizer with a mini batch size of 64, learning rate of 0.0001, mean
absolute error as loss function, and ReLU as activation function,
with the final regression layer having no activation function. Rather
than training the model for a specific number of epochs, we used
early stopping with a patience of 200, meaning that we stopped
training when the performance did not improve in 200 epochs. For
traditional ML models, we used Scikit-learn [35] implementations
and employed mean absolute error (MAE) as loss function and error
metric.

Datasets. We used four datasets to evaluate our models: OQMD-SC,
OQMD-C, MP-C, and OQMD-SC-ICSD. OQMD-SC is composed of
435582 unique compounds (unique combination of composition
and crystal structure) with their DFT-computed formation enthalpy
from the Open Quantum Database (OQMD) [27]; this is used for
the design problem. It is composed of 271 attributes: 125 derived to
represent crystal structure using Voronoi tesselations and another
145 physical attributes derived from composition using domain
knowledge, as in Ward et al. [47]. OQMD-C is composed of 341 443
compounds with the materials properties from OQMD as of May
2018. MP-C is composed of 83 989 inorganic compounds from the
Materials Project database [22] with a set of materials properties as
of September 2018. OQMD-C and MP-C contain composition only
(no structure information); we compute 145 physical attributes from
the composition using Ward et al.s methods [47]. OQMD-SC-ICSD
is composed of entries from the Inorganic Crystal Structure Data-
base (ICSD) [5] present in OQMD-SC. The datasets are randomly
split into training and test sets in the ratio of 9:1.

4.1 Design Problem

First, we analyze the impact of different design choices by evaluat-
ing the proposed models on the design problem. The design problem
involves learning to predict formation enthalpy from input vector
composed of 126 attributes to represent crystal structure and 145
physical attributes in OQMD-SC dataset. An extensive architecture
search and hyperparameter tuning is performed to search for the
best deep regression model for the design problem.
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Figure 2: Test error curve for various plain networks for the
design problem. Batch normalization before activation func-
tion (FC+BN+ReLU) improves performance significantly.

17-layers
T 24-layers
..E 48-layers
>
C ~——
w 10t} 1
<
=

(V] 5000 10000

Iteration

Figure 3: Test error curve for deeper plain networks for the
design problem. Performance degrades with network depth,
even in the presence of batch normalization.

4.1.1 Basic Components. We experimented with different patterns
of use of our basic components—fully connected layer, batch normal-
ization, activation function, and dropout—within the plain network.
Use of batch normalization resulted in significant reduction in er-
rors, as seen in Figure 2. Batch normalization can be used either be-
fore (FC+BN+ReLU) or after the activation function (FC+ReLU+BN).
For our regression problem, using batch normalization before ReLU
(FC+BN+ReLU) worked better; the original work also used it before
the activation function for image classification problem [21]. Since
ReLU truncates all negative activations to zero, applying batch
normalization on ReLU outputs leads to changes in the activation
distribution; since the regression output is dependent on all activa-
tions, batch normalization after ReLU leads to higher oscillations
and poor convergence.

We also experimented with using dropouts after the first four
stacks for better generalization; however, dropouts resulted in slight
degradation in the performance. The best plain network architec-
ture for our design problem is composed of 17 sequences containing
a fully connected layer, a batch normalization and a ReLU; we refer
to this as the 17-layer plain network. as shown in Figure 1.
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Figure 4: Impact on residual learning for the design problem. Both residual networks outperform the plain network, and the
individual network outperforms the stacked network for all depths of network. We observe similar trends even in the case of
training error curves for all types of networks of all depths; the IRNet converges faster than the SRNet and Plain Network for

all depths.

Table 2: Performance of deeper residual networks for the
design problem. Test errors are MAE in eV/atom. Increased
depth of residual network architectures leads to improved
performance for both stacked and individual residual net-
works. The individual residual network (IRNet) clearly out-
performs the stacked residual network (SRNet), achieving
significantly lower MAE.

Model Type |Plain Network| SRNet IRNet
17-layer 0.0653 0.0551 0.0411
24-layer 0.0719 0.0546 0.0403
48-layer 0.1085 0.0471 0.0382

4.1.2  Residual Learning. Figure 3 shows how performance can de-
grade with increased depth for plain networks. This happens mainly
because of the vanishing gradient problem. To solve this issue, we
introduced residual learning to create SRNet and IRNet, as discussed
earlier. We see in Table 2 and Figure 4 that the introduction of short-
cut connections to enable residual learning significantly improved
model performance, presumably by helping with the smooth flow of
gradients from output to input. We compared the individual resid-
ual learning in IRNet with the existing approach of use of shortcut
connections after stacks of multiple layers in SRNet. The stacks
are formed by putting the consecutive layers with equal number of
output units in a stack.

We observe a significant benefit from the novel approach of using
shortcut connections for individual residual learning in IRNet; the
mean absolute error significantly decreased compared to SRNet
as seen in Figure 4 and Table 2. Both the training and test error
curves in the case of IRNet exhibits better convergence than both
SRNet and plain network during the training.We conjecture that
learning the residual between the output and the input vector of the
sequence is better compared to learning the more complex residual
mapping in the case of stacked residual network in SRNet. Also, if
the identity mapping using shortcut connections are optimal, the
residuals would be pushed to zero and hence, better suited for batch
normalization to learn our regression output. This illustrates the
advantage of using individual residual learning for deep regression
networks composed of fully connected layers for vector inputs.

Table 3: Performance of Traditional ML Approaches for the
design problem. We performed extensive grid search for hy-
perparameter tuning for all the listed ML models. Test er-
rors are MAE in eV/atom.

ML Approach | Test Error
AdaBoost 0.479
ElasticNet 0.384
LinearRegression 0.261
Ridge 0.261
SVR 0.243
KNeighbors 0.154
DecisionTree 0.104
Bagging 0.078
RandomForest 0.072

4.1.3 Deeper Architectures. Next, we experimented with deeper
architectures composed of 24 and 48 sequences of layers for all types
of deep regression networks: plain network, SRNet, and IRNet. From
Figure 3, we can clearly observe the performance degradation issue
in plain networks that do not leverage any shortcut connections
for residual network. Figure 4 illustrates the trend in error curves.
Although both types of residual networks exhibit reduced test error
with increased depth, the rate of reduction for IRNet is significantly
better than that for SRNet. To prevent overfitting of such deep
models with large numbers of parameters to the training dataset, we
used early stopping with a patience of 200. Table 2 shows the final
MAE for all types of networks with different depths. Our results
illustrates the efficiency of using individual residual learning with
deeper architectures.

4.1.4 Comparison with Other ML Approaches. Next, we compared
the performance of the proposed deep learning model with tra-
ditional ML models: see Table 3. We performed an extensive hy-
perparameter search to find the best hyperparameters for all ML
models. For instance, for Random Forest model, we used a mini-
mum sample split from [5, 10, 15, 20], number of estimators from
[100,150,200], maximum features from [0.25, 0.33] and maximum
depth from [10,25]. Similarly, extensive grid search for optimization



1-0 T T T

0.8 1
w 0.6} 1
[a]
o4} -

0.2 1 Random Forest ||

IRNet
0.0 L L I I
0.0 0.1 0.2 0.3 0.4 0.5

MAE (eV/atom)

Figure 5: Cumulative distribution function (CDF) of the pre-
diction errors for the design problem. Deep learning (IRNet)
performs significantly better than the traditional ML ap-
proach, Random Forest, achieving a 90th percentile MAE of
0.081 eV/atom vs. 0.158 eV/atom for Random Forest.

of hyperparameters for other ML models are used. Among all of
the traditional ML approaches considered, Random Forest achieved
the best MAE of 0.072 eV/atom. By comparison, the 48-layer IRNet
achieved an MAE of 0.038 eV/atom, significantly outperforming
Random Forest for the design problem. Figure 5 illustrates the
comparison of the prediction errors for the test set. Deep learning
provides a more accurate and robust prediction model than does
the state-of-the-art ML approach, Random Forest, predicting the
formation enthalpy of 90% of the compounds in the test set with
half the error of Random Forest. These results demonstrate that
deep learning in general, and IRNet in particular, can help construct
a robust model for predicting formation enthalpy from materials
crystal structure and composition.

4.1.5 Summary of design insights. We draw the following lessons
from our experiments with building deep regression networks for
learning regression output from numerical vector inputs.

(1) Batch Normalization Batch normalization works better in
deep regression networks if used before ReLU. Otherwise,
ReLU truncates all negative values to zero, which makes
learning the regression output hard. Dropout with batch
normalization slightly worsens performance.

(2) Residual Learning Residual learning in deep regression
always performs better compared to directly learning to fit
the underlying mapping from input vector to the regression
output.

(3) Individual Residual Learning Putting a shortcut connec-
tion after each sequence of layers (IRNet) works significantly
better than the conventional way of putting the shortcut con-
nection after each stack of multiple layers (SRNet).

The presented architecture can be applied to other data mining
problems with vector inputs in scientific domains; they can provide
more robust and accurate predictive modeling than the existing ones
based on traditional ML approach. The same architecture can be also
applied to classification problem by adding a softmax activation
at the last layer and using cross entropy as the loss function.

4.2 Other Datasets

We evaluated the proposed deep regression architecture on learning
materials properties present in two other datasets, OQMD-C and
MP-C. OQMD-C is composed of 341 443 samples while MP-C has
83 989 samples; they contain the materials properties with their
composition. For comparison, we used the 17-layered plain net-
work and ten other traditional ML approaches. We did not perform
hyperparameter tuning and architecture search for deep learning
models for these tasks, to illustrate the general purpose use of the
proposed deep regression model. The deep regression networks
designed for the design problem were trained on an input vector
containing 145 physical attributes derived from composition; they
were trained from scratch using random weights initialization. For
the traditional ML models, we performed an extensive grid search
for hyperparameter optimization as in the previous case for the
design problem.

We can observe three things from the results in Table 4. First, the
deep learning network almost always outperforms the traditional
ML approaches. Second, the proposed network with individual
residual learning performs better than the plain network in all cases.
Third, deeper networks worked better in case of OQMD-C while
they did not help in case of MP-C, suggesting that deeper networks
work better when the dataset size is larger (OQMD-C vs MP-C).
This agrees with the fact that deep neural networks perform better
with big data. The results demonstrate that although the proposed
model was originally designed for a different design problem, they
almost always outperform the plain network and the traditional
ML approaches used by domain scientists. We also experimented
with SRNet from design problem for these prediction problems,
SRNet performed better than the plain network but worse than the
IRNet, similar to the results for the design problem. This illustrate
that IRNet can serve as a general purpose deep learning model
for different predictive modeling tasks where we need to learn
the regression output from an input vector composed of materials
composition and/or crystal structures.

4.3 Application for Materials Discovery

Since the proposed model achieved a significant reduction in predic-
tion error for formation enthalpy compared to state-of-the-art ap-
proach, it can be applied for high throughput materials discovery. To
test the ability of the proposed method to identify new materials, we
emulated a common approach in computational materials science,
namely combinatorial search . A combinatorial search involves first
enumerating all possible combinations of different elements on a
specific crystal structure prototype, and then evaluating the stabil-
ity of each resultant structure with DFT to find which are stable.
We performed a combinatorial search using the evaluation settings
based on the combinatorial search analysis from [48]. OQMD-SC-
ICSD, used as a training set by Ward et al. [48], comprises 32111
entries in OQMD-SC that correspond to known, experimentally-
synthesized materials in ICSD [5]. The proposed IRNet is trained
using the OQMD-SC-ICSD dataset and evaluated by predicting the
formation enthalpy (stability) of materials with crystal structures
from three different, commonly occurring crystal structure types:
B2, L1y, and orthorhombically-distorted perovskite. These three
structure types were chosen to sample structures with different



Table 4: Performance on OQMD-C and MP-C datasets of our DNN models vs. 10 traditional ML approaches for regression
problems: Linear Regression, Lasso, Ridge, Decision Tree, Adaboost, KNeighbors, ElasticNet, SGD Regression, Random Forest
and Support Vector, with extensive grid search used to tune hyperparameters for each. Test errors are MAE in eV/atom.

Dataset |Property Best of 10 ML | 17-layer Plain Network | 17-layer IRNet|48-layer IRNet
Formation Enthalpy 0.077 0.072 0.054 0.048

OQMD-C Bandgap 0.047 0.052 0.051 0.047
Energy_per_atom 0.1139 0.0939 0.0696 -
Volume_pa 0.473 0.0.483 0.415 0.394
Bandgap 0.4788 0.396 0.363 0.364
Density 0.5052 0.401 0.348 0.386
Energy_above_hull 0.1184 0.098 0.091 0.0944

MP-C Energy_per_atom 0.2999 0.175 0.143 -
Total_magnetization 3.232 3.0897 3.005 -
Volume 225.671 219.439 215.037 -

Table 5: Performance from combinatorial search. Our 17-
layer IRNet, when trained on OQMD-SC-ICSD, predicts for-
mation enthalpy (stability) more accurately than Random
Forest for all three types of crystal structures considered.

Crystal |Random Forest|17-layers IRNet
Structure | MAE (eV/atom)| MAE (eV/atom)
B2 0.5114 0.4780
L1g 0.4793 0.4419
0.6166 0.3693

Perovskite

kinds of bonding environments and that are stable with different
types of chemistry (e.g., metals vs. oxides).

We show in Table 5 the deep learning model’s prediction error for
each type of crystal structures. To compare the performance of our
deep learning model, we also trained a Random Forest model (the
best traditional ML approach from previous analysis) on OQMD-SC-
ICSD, with extensive hyperparameter search. Our results demon-
strate that our models perform better on the evaluation candidates
than does the Random Forest model. Although we do not repeat
the entire combinatorial search workflow here with the proposed
models, more accurate predictions on the discoveries from Ward et
al. [48] suggest that the proposed IRNet model can improve the qual-
ity and robustness of the combinatorial search workflow. Despite a
small training data size, the IRNet model provides a more robust
method for performing combinatorial search for high-throughput
materials discovery.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we studied and proposed the design principles for
building deep regression networks composed of fully connected
layers for data mining problems with numerical vector input. We
introduced the use of residual learning in deep regression network;
we proposed a deep regression network (IRNet) that leveraged
individual residual learning in each layer. The proposed IRNet
outperformed the plain network (without residual learning) and
traditional machine learning approaches in learning different ma-
terials properties from different size of datasets and input vector.

For the design problem of predicting formation enthalpy from crys-
tal structures and composition, the proposed IRNet significantly
reduced the MAE from 0.072 eV/atom to 0.038 eV/atom. We were
able to converge the deep regression networks with up to 48 lay-
ers, performance increasing with greater depth. Since IRNet kept
improving performance with increased depth, we plan to explore
deeper IRNet architectures to study their impact on model perfor-
mance and convergence, and to apply the resulting networks to
data mining problems from other scientific domains. It will also
be interesting to see how this model performs on experimental
datasets using transfer learning from larger simulation datasets.
The proposed deep learning model and design insights gained from
this work can be used in building predictive models for other ap-
plications with vector inputs. The code repository is available at
https://github.com/dipendra009/IRNet; we also plan to make the
models described in this work available via DLHub [9].
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